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1. The basic idea.
The goal of this EDM Note is to ‘show how we can cancel the second-order effects of

betatron and synchrotron oscillations violating the main condition of our deuteron EDM

ma=-’i—{lalB llal-%—( )]ﬁE} , ideal case. - | .’(1.1)

The basic idea is the following. Consider, for example, the violation of (1.1) by horizontal betatron

experiment ,

oscillations, x(s), s is the longitudinal coordinate, .
%5(8) = AnfB.(S) co(y,(5)+5.). ‘ (1.2)
(The subscnpt B distinguishes free betatron oscillations from closed orbits depending on Ap/ p-
"We will omit this subscnpt when it will not lead to the readgr‘s confusion.) In (1.2), T use the
Handbook [1] expression for x(s), p.49, section 2.1, formula (2), in which the dimension of A, is
2, notm. Any terms linear in x in (1.1) are averaged to zero over time, but the quadratic are
not. As a result, we have there the horizontal pitch effects proportlonal to ( ) and

19 ) ((dx/ ds) ) summarized as
(A wa)betatran = Aa_)al = alAj * (13 )

horizont

The factor a, depeﬁds on the lattice structure. (1.3) is an incoherent, individual perturbation of a,,
different for particles having different amplitudes A, . Therefore, it leads to a steady loss of the
beam polarization P in time. Our goal is, of course, to prolong the coherence time as much as

possible. So if we want to keep our beam polarized up to, say, 1 minute, while permitting the
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- Fig. '2 One small period of the FODO part.
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o F ig. 5 B, ﬁy, D, P?, v, in the.semicircle FODO part of the ring.
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2. Main elements of the lattice of a deuteron EDM ring.

The size of such a ring, Fig. 1, is more or less defined by an assumed magnitude of the
radial electric field, ER; and the desirable momentum of deuterons, p. Certainly, we need p>0.6
GeV/c. I have assumed the electric field at fhe equilibrium orbit, E=4 MV/ni:l 3333%107* T, and
the equilibrium deuteron momentum, p=0.788 GeV/c. This gives me the equilibrium orbit radius
| inside the BE sections, R=15m, ;':md the magnetic field there, B=0.2095 T. "BE" means tiler
combination of the vertical magnetic field, B, , and the radial electric field, E;. At the ideal

equilibrium orbit, condition (1.1) holds, where a=-0.143, m=1.8756 GeV. The related formulas I

have used are

p=03(B-E/B)R, (2.1)
B= l—l-l[ld +( ) } 2.2)
= O.;R X M*:f 3 , 2.3)

ﬁ{ld +H }—14

p
d+ (ﬁ) 1

p=03E -—lalﬁ—— B -5 | (2.4)

B=vic=1/\1+(mip)* ,pin GeV/c,Band Ein T, R in meters.
Thus, :

p=0.788, E=1. 3333:15 B=0.2095, B =03873, B> =0.15, (m/p)’ = 5.6654,

yi=1+(p/m)’ = , ¥=1.0847, f, =0.9306 MHz, ————laIB — 144,34 kiz (2.5)

i

Any design .of a deuteron EDM ring must obey the following physical conditions:

I. The ideal ring must be symmetric with respect to the clockwise (CW) and
counterclockwise (CCW) movements of the deuterons. During the CCW runs, the sign of the
magnetic field must be changed not only in the magnetic dipoles, but in all magnetic elements of the
lattice shown in Figs. 2, 3. (In particular, a ring version designed for muons in [3], where the

magnetic lens currents must be not changed, is not acceptable in the much more precise deuteron



approximation, it is canceled on the average (meaning averagé in time) by introducing syachroi:ron
oscillations of the particle momenta with the help of the corresponding RF cavities,

Ap/ p=(Ap/p), cos(a)st% ¢). However, synchrotron oscillations are not exactly linear. There are
various quadratic terms in the synchrotron equations, different for different particles, and these
terms shift ﬂae equilibrium momenta of these particles. As a result, the main off-momentum effect

violating (1.1) is not zero, and is not linear:
Ap! p=(Ap!p)+(Ap/ p), cos(m ¢+ ¢), (1.7)
where (Ap/ p) is shifted from zero value by second-order effects proportional to {A2), (Ayz ) , and

((Ap /p) 2). Such a shift influences all three factors a, dz, and a;, so we can use it in our design
to control (1.1) by manipulating synchrotron equilibrium, i.e., (Ap/ p). The principal possibility
of controlling all three factors by sextupoles arises from the fact that the full horizontal

oscillations x(s) in (1.4) contain both betatron and synchrotron oscillations,

x(s) =x4(s)+D(p,5)Ap/p, (1.8)
x5 (s) from (1.2). (About function D(p,s), see [1], p- 50.) Therefore, on the average,
(#*)=(xz)+ D¥((ap/ p)’). (1.9)

(The uncounted linear term, 2Dxg(p/ p) plays an important role in the problem of the free
betatron oscillations' chromaticity. But it is not our main concern here.) Thus, on the average, field

(1.4) of sextupole #k is

(B.)=B{(x2), ~(53). + DX{(4p/ )] (1.10)

In this Note I show that, with the help of the sextupoles, the proposed accuracy of @, =0
is possible in principle. But the calculations for the final design need much more work. For
example, I have used here a thin lens approximation, which is not exactly realistic. I have done so
because such an approximation is very transparent, almost all effects can be represented
analytically, and many preparatory formulas can be verified by [1]. A number of higher-order
effects which are needed in order to know a,, a,, and @, more precisely—with the accuracy 10~
—are not taken into account here, Also, in order not to complicate the main subject of this Note, I

have not included the acceleration of particles by the radial electric field into the calculations.



We now need to take into account the ‘sextupole fields, see eqs. (1.4), (1.10) above. The
shortest way to calculate @, is to use formula (2) in [1], p. 263: If a particle passing a very short
area As =1, of the magnetic perturbation, AB,, gets the same kick (angle deflection) 6, during
every revolution, then, on the average, its closed orbit length is changed as

AL=6,D(s). | (4.13)
(This formula is consistent also with the Hamiltonian (44) represented in [ 11, p. 70.) The kick
produced by a perturbation AB equals @ =—ABI / BR ; in the case of a sextupole,
AB=(B"D’L,/2BRY(Ap/ py*; therefore,

'D3(S)l 7 . 2 2
0 =~y =il SBRr . B/=9 B/Qx.. (4.14)



3. The relevant lattice formulas and parameters.
First of all, we need to specify the B and E fields in the BE section. If the electric plates are

infinite straight vemcal plates, as we assume here, then the 1dea1 electric field

OR) EO
E=En)==p"= (1+x/RO)

It is not unreasonable to design the ideal magnetic field of the BE sections so that it has similar

CRY)

behavior in the horizontal plane:

BR___B
B(v=0)=RB =2l . 3.2
(y=0)=B,(x) R (+x/R) , (3.2)
For y# 0, keeping only terms linear and quadratic in y,
it _
B, = °R°[ ; (—l%) } inside BE, (3.3)
B, =-—%21—‘)Qy, inside BE. | | (3.4

This choice is rather arbitrary and needs to be compared in future with alternative choices. Different
choices produce slightly different factors a,, a,, a, in formulas ( 1.3), (1.5), (1.6). The advantage
of our choice of BE fields is that for particles with the ideal niomentum, condition @, =0 holds
for any x (but not for any dx/ds) in the central plane of the BE. The magnetic field index for field
((3.3)-(3.4), n=—R(3B/ dR)! B=1, equals 1 for eveI:y x in the central plane. If the particle is
moving m the central plane, y=0, and in parallel to the ideal orbit, x=constant, then in all
approximations there are no focusing forces either from E or from B fields because the path length,
dl = ds(1+ x/ R), is going up while the fields are going-down with x as 1/(1+x/ R), see Fig. 4a.
In this case, the fields (3.1), (3.2), averaged over the particle trajectory inside BE's, always

equal £, and B, independently of x, so tﬁere are no violations of condition (1.1) either.

However, perturbed trajectories are not parallel to the central axis. Correspondingly, there
exist effects yiolating (1.1) and proportional to ¥>= (dx/ ds)z. We will take them into account.
(We will neglect only the average effects of acceleration in the horizontal E,-field, which are also
proportional to ©92.) Nonzero (dx/ds)” and (dy/ ds)’ play the major role in the generalized
horizontal and vertical pitcil effects considered in the following sections. In particular, the

lengthening of the trajectories due to x and y oscillations, see Fig. 4b



- Figs. 4 a, b. The effects of trajectory lelggthening. :
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our sextupoles (in order to cancel the off-momentum violation of (1.1)) is a,, and we will show

how it can be used.

We need to calculate all Ap/ p and (Ap/ p) terms violating (1.1). First of all, there exists a
factor before Ey equal to —~(e/ m)lld+m? / p*1B which directly depends on momentum. This

coefficient produces

_e 2E A& | _E 3B°( 2FE Ap ) | Ly
o)y - ”{ (12 Lawy“B*zy F 1)1 j} AN

and we know from (4.6) that the term (Ap/ pj here contains a non-oscillating part proportional to

(Ap! py’ . Below we will add to (4.7) more terms linear and quadratic in Ap/ p describing the
field perturbations met by moving particles, and will investi gate the meaning of (Ap/ p). (The
terms not connected to Ap/ p are considered in the next section.)

- The next step is to analyze all effects following from the perturbations of the closed orbit
due to Ap/ p, (Ap/ p)zz

2
x(s) =2x,(s) + D( p,s)%)’f— + d(s)(ép’i) . (4.8)

Here, by definition, d(s) depends only on sextupole fields, so o, ={d/R). (But we can calculate
o, without actual calculation of d(s).) Our dispersion function, ﬁ( D, 8), is different from the
usual D(s) ,which does not depend on p . In fact, IX p,s) is the (slightly approximate) solution of

equation (17) in the Handbook [1] (on p.50), which does not take into account sextupoles. That

equation is _
” 1 dBldk\p, L DXps) Ap
.(17) of [11: D*(p,s)+|—=+ ,)-— —=——. (49
Eq. (17) of [1] (p (Ro BROJ X Rop K (4.9)

The equation for the usual D(s) , which leads to our formulas (3.20)-(3.23), (3.33),
corresponds to p = p, and Ap =0 in (4.9). X D, 5) is therefore the solution of (4.9), taking into

account the next approximation in Ap/ p. The last term in (4.9) is already proportional to Ap/ p;

so, with a very small error, we can substitute ¢, = (D(s)/ Ro) for I p; s)/ R,. Now, remember

that in our BE sections,

1  Blox 0, R 0, BE sections. (4.10)

EBR R



Finally, using (4.11) and the designed definition of the focal length, see (3.14), we get

] R

B, p)p’

e L Ap |A
(00, s = 2l 1.0, 22122

(4.24)

(4.25)

15



Now, gathering all contributions fogether, using the formulas and numbers represented

here, (L, /L= 0.7547, relativistic 7/2 =1.1765,. oy =0.03327, etc.), we have: -

e £BL —1— 2E _ _A_p _ E 3ﬁ2 2E B AE_ 2
(o), =z, {(“72 (la[ﬂB 1B<p ) {9‘016““" [lalﬁ74B+272[ldﬁB IDK( D}

p

(4.29)
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4, Calculafion and correction of a(Ap/ p)z.
As noted, the quadratic ﬁerturbations (1.3),(1.5),(1.6), ‘
Aw, = Ao, + Aa, +A,, = Al +a,Al +a(Ap! p), 4.1
cannot be separated from the perturbatic;n linearin Ap/ p when sycﬁrotron stabilization holds.
‘What the synchrotron oscillations actually stabilize is the average (in time) period of particle
revolutions, T=L/v. If the relevant rihg parameters are constant in time, then on the average (in
time) all individual T's are the same. This means,

. » ' »
<A(L/v)>=<§£_éz_é£_é\z+(é‘i} +,.>=0. 42)
LQ/VO Lo Vo ‘LO Vo Yo

This is the only feature of synchrotron oscillations needed for our purpose.

(From now on, we will omit indices "0" if this will not lead to ambiguities.) In this section

we consider the case x; = y; = 0. In such a case, we have (ignoring cubic and higher-order

effects):
<—A-L?-> = aOAP- +(o, +o, + %,)(_A_E] , (4.3)
p p

M\ 1 [ap\ 3B [(apY
-3 222
vli Yy’ \pl 27 \\p _ .
AL AV\ ’
(___ é.‘i) _ 2‘_3_<(é£) > . (4.5)
Lvi v\rp _
The physical difference between second-order compaction factors ¢, o, and o, will be

explained éhoﬁly. The usual compaction factor ¢, is given in (3.23) above. We see that in order to

satisfy (4.2), the individual equilibrium of Ap/ p is shifted,

Ap\ 1y 3B 127 —a, Y2+ oy +0 +a, [(Ap)
22) = 221). (4.6)
P 1/72 =0y p

(There are more quadratic terms on the right side of (4.6) in the full expression for (Ap! p), if we

take into account free betatron oscillations. These terms can be considered independently of

((Ap / p)2>, as will be done in the following section.) The only factor here that can be changed by



. Io ‘ |
AL=L~ L, = [dsyf(1+x/ RY +(dx! ds)’ +(dyl ds)’ - L, (3.5)

is the biggest contribution to g,'s. From (3.5), in the second-order approximation,
AL [x\ 1,.\ 172
— =\=)+=(F;)+=\V,)- .6
L e
(3.6) is a purely geometrical effect. With respect to betatron oscillations, (193 ) is proportional to
Af ,and (19; ) to Ay2 . In the synchrotron region, 193 =(D(s)) (Ap/ p)*. Due to various nonlinear
terms in the betatron equations, {x/ R) itself depends-on second-order effects, |

(’JE'> =(0 + o AB)% + az(g) +‘.7xA: +qu;: (3.7
R pp p |

" The meaning of &, 0y, 0, q,, q, Will be clearlater in this Note. (3.7) is a purely betatron '
dynamics effect. In (3.6) and (3.7), { ) means averaging in time high frequency betatron
oscillations, while Ap/ p is considered approximately constant in time. Then (3.6), (3.7) go into
the equations for slow synchrotron oscillations. In the next section we will show that {Ap/ p),
being z;veraged over synchrotron oscillations, is shifted by all kinds of quadratic terms from its
linear equilibrium Ap/ p =0, so

' (—é£> ocindividual quadratic terms. (3 8)
D






2
Ap e
(Aw,), = a{—;) , ay= ;IalBV[o.9881 +1.9437a,,]. . (430).
- To eliminate a;, we need _ _ »
BDI, 1 '
o, = —=-0.51.
=y Bl TR . (431)

- For an estimation, assume that we can use only 10 sextupoles placed next to + quads, /, = 0.5m,

D" =0.8921m, B=0.2095T, R=15m, L=124.89m. Then we need B” = 90m’2.-ANL uses
sextupoles with. B” = 415m™> (for Advanced Proton Source, see [1], p. 443, table 2).

5. Calculation and correction of the g A’ and aszz terms.

We now discuss the (generalized) horizontal and vertical pitch effects. The horizontal pitch
effect has not been previously noted. (In my EDM Note #10, I considered only cases x; =
dxglds=0, thatis A; =0.)

There are four physically different effects leading to the dependence of A®m, on A2, Aj )

1. The first effect is the result of the combination of trajectory lengthening, AL/ L, due to
V2 = (dx,/ ds)* and ¥, = (dy/ds)*, see formula (3.6), and the synchrotron stability leading to
dependence of (Ap/ p) on this lengthemng The effect can be calculated 1mmed1ately

(%L—)ﬁ ="((ﬁ )+(9; »""‘f ds'(y (s)AZ +7,(s )Ay) (5.1)

where ¥ =(1+ o)/ B is one of the three Courant-Snyder parameters. In (5.1) s — oo . Formula

(5.1) follows tfrom formulas (2), (3) of [1], p.49,
x(s) = A B, (s) cos(y (5) +8,), x'(s) =— Jﬁ% [er, (s)cos(w, () +8,) +sin(y (s) +6,)] (5.2)

and analogously fory. A, 6 are constants,
= %2 () B(8)= (25 max | Broa- (53)
So if, for example, (x,__ (s))max =2.5cm, and B, =6.5m, then A*=0.9654 x 10™*m. In our lattice,
ﬁ max = ﬁ ¥ *
In (5.1), 7, =constant between quadrupoles (but not inside quadrupoles), see Edwards

and Syphers [6], p.97. We have (with ¥ -values given in (3.19), (3.32) above),

16



4. We obviously need to compensate effects proportional to Ax because with Ax 0™

and (Ap/ p) ~107°, the violation of condition (1.1) by betatron oscﬂlatlons 1s more than one order
larger than the violation by the momentum spread. So the fourth effect is the effect of sextupoles
used for these compensations. When the particle performing betatron oscillations passes sextupole

# penod1cally, it periodically gets a horizontal angle deflection equal to

Bl'( —yz)i lsi ‘
6.); YT (5.15)
On the average,
__BB.A-B,ADL
((6.))= 3F (5.16)

According to [1], p.263, formula (2), this periodic deflection shifts the horizontal equilibrium, so



7), (%), T Af[ b '
—| == +|— . —EE 4 . 0.2134 54
( L % L x5 BE L xg1 Y o L y ! L Ax ( )
This goes into (Ap/ p), |

— -————————-02613 5.

< P )x 1/7/ - 0‘0 Ax 4 &

This, in turn, goes into

_24p Lex 1 AP =L
(Acua)xb —mlaIBV 7 [1 ' a’ ﬁB K IalB,, -0.4147A’. | (3.6)

7,(s) has exactly the same value as 7,=1.0444 in the straight‘ sections. It is slightly

different, and not exactly constant, in the BE's, because vertical oscillations are focused there (the

field index n=1). In the linear approximation, in which ¥, is defined,

1 :
¥+ 2 y=0, inside BE's, linear approximation. B7
We get
AL s e 2
— ) =021394), (Aw,), ==|dB, -0.41574;. (5.8)
¥ m

2. The second effect also deperds on betatron angles, ¥, zﬁ‘y. Due to these angles,

magpetic and electric fields met by a spin passing a BE section differ from their designed values.

With respect to the electric field, the.average vector product v X E ischanged. (Such aneffect
“was not dangerous in our (g-2) ﬁng only because, in the g-2 experiment, the equilibrium electric

field equalled zero.) As for the magnetic field, the effect is the usual F. Farley pitch. The best way

to understand both electric and magnetic field perturbations in this case is to analyze the J.D.

Jackson formula (11.171), [7], p.550:

e ey e o B
where ¥ is velocity, B =v/c, § is the rest frame spin, 5 ,,,, is a part of the spin vector

perpéndicular to ¥ . We consider the case of B = EV perpendicular, and E=E » parallel to the

ideal orbit plane. v x B'is also parallel to the plane; therefore, only the component of 5,,,, lying in

the pla.ne contributes to rotation of the spin relative to velocity. It is easy to see, with a 11tt1e

algebra, that if ¥ is also lying in the plane and is perpendicular to E, ‘and condition (1.1) is

17



ALY _ < BD(B,A - BADI,
( L )q = 4BRL : (5.17)

Because of the synchrotron stability, (5.17) leads.to the shift of the momentum equilibrium,

N <_Z_k_£> _ (AL/L)q _ 1 zBi'Di(ﬁxiAz°'ﬁyiA3)lsi

p Uy -a, (1/7°-a,) 4BRL (5.18)

And, finally, this leads to the corresponding v1olat10n of condition (1.1). Using the term

proportlonal to (Ap/ p) in our formula (4.26), we get
BDB.1, B'Dﬁ ihi
(Aw,), =-09719Y SpRr Al +o. 97192-——-L A (5.19)

After gathering all betatron terms, we have

(Aw,), =aA (0 564 —0.9719y Ltk B’:D"R*z )Ax, (520

> i
(Aw,), = a4 = (0.2629+ 0.97192—?;%%),4;. (5.21)

~ 6. Conclusion.
Thus, the situation is the following. To cancel a,, 4,, a;, we need to satisfy three

conditions:
1. 2 Bfchkﬁﬂclsk
2BRL

B'kaB klk
2. — -0.27,
2 2BRL %
BD3
~ 3' ="k sk
z 2BRL

=0.58, 4 =0.

0.
=0.51, a,=0.

It is instructive to compare these conditions with the conditions for the betatron

chromaticity cancellation:
Z%&zo.43, £ =0,
2BRL
Y BBl ¢ 43 £ =0.
ZBRL y

We see, first, that when we satisfy our conditions 1 and 2, we simultaneously reduce the x- -

chromaticity to -26%, and the y-chromaticity to 37% of their original magnitudes. And second,

19



If (%)‘Z =107%, (Z)maz = (¥)maz = 2.5cm, then the coherent time ~ 10 s can be achieved

by satisfying 1 and 2 only, with accuracy ~ 1%.. To get coherent time ~ 1 min, it is sufficient
to squeeze (épﬂ) by factor three, and to satisfy 1 and 2 with accuracy 0.15%.
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